From furnace to future: enabling low-carbon steel manufacturing in Southeast Asia Driving Southeast Asia's transition to low-carbon steel through clean energy, policy change and regional collaboration **Kajol, Mentari Pujantoro and Emir Çolak** 24 July 2025 ## Content - → Southeast Asia steel production and growth - → Challenges in the steel sector - → Pathways and enabling conditions ## Southeast Asia steel production and growth ## **Energy landscape in Southeast Asia** Greenhouse gas emissions by sector in Southeast Asia, 2022 Energy demand by fuel in Southeast Asia, 2022 ## Steel demand in Southeast Asia is projected to reach 101 Mt by 2030 ## Steel demand is growing, driven by urbanisation and infrastructure projects Historical and forecasted steel demand in Southeast Asia ### The construction sector is driving the growth of steel consumption (2024) Steel consumption by sector in Southeast Asia and globally ## Historically dominated by EAF, the region has now shifted towards **BF-BOF** route BF-BOF share in SEA crude steel capacity rose from 6% to 30% between 2011–2020, adding ~20 Mt capacity Historical and forecasted crude steel capacity vs emissions in Southeast Asia **Investment from Chinese companies and domestic** policy have driven BF development pipeline in ASEAN-5 Announced foreign investment in steel production capacity (2023) ## The evolving steel trade landscape in Southeast Asia ## Southeast Asia's rising scrap demand highlights the need for investments in improved recycling practices Scrap demand in Southeast Asia (2023) ### The challenge lies in remaining competitive Steel exports from Southeast Asia (2023) ## Steel sector challenges in Southeast Asia ## Challenge 1: Young, carbon-intensive fleet and overcapacity risk longterm emissions lock-in The young steel fleet poses a structural challenge for transitioning to greener technologies Overcapacity issue and further investment in carbonintensive fleet threatens flexibility in a changing market Steel production and installed capacity in Southeast Asia ## Challenge 2: Availability of technology and cost of green steel #### Feasibility analysis of net-zero technologies for Southeast Asia Technology available by 2030 | Low-carbon
technology | CO₂ re-
duction | Residual
emissions | Energy
con-
sumption | Challenge in
Southeast Asia | Additional factors | Global
production
cost (2050) | |----------------------------------|--------------------|----------------------------------|----------------------------|---|---|-------------------------------------| | NZE Scrap-
EAF | 100% | 0.01 t
CO ₂ /t CS | 2.8 GJ/
t CS | Access to high quality scrap | Access to renewable energy | 630-840
USD/t CS | | DRI-EAF
100% H2 | 100% | 0.007 t
CO ₂ /t CS | 10.8 GJ/
t CS | Additional steps/
assets needed
for lower quality
iron ore | → Allows for flexible
hydrogen uptake → Requires access to
renewable energy
and green hydrogen | 720-950
USD/t CS | | DRI-SMELT-
BOF 100%
H2 | 98% | 0.04 t
CO ₂ /t CS | 11.9 GJ/
t CS | Lower
quality iron ore
possible | → Allows for flexible
hydrogen uptake → Requires access to
renewable energy
and green hydrogen → Access to renewable
carbon input | 720–950
USD/t CS | | Technology available beyond 2030 | | | | | | | | Technology available beyond 2030 | | | | | | | | |----------------------------------|-------------------|------|----------------------------------|------------------|---------------------------------------|---|-----------------------| | | моє | 100% | 0 t CO₂/
t CS | 14.8 GJ/
t CS | Lower
quality iron ore
possible | Requires large amount of continuous renewable electricity | 600–1,100
USD/t CS | | | AEL-EAF | 100% | 0.01 t
CO ₂ / t CS | 13.7 GJ/t
CS | Lower
quality iron ore
possible | Requires large amount of continuous renewable electricity | 600–1,100
USD/t CS | | | BF-BOF CCS
73% | 73% | 1.362 t
CO₂/t CS | 22.8 GJ/
t CS | Lower
quality iron ore
possible | → Requires access to
extensive CO₂ transport and storage
infrastructure → Low technology
development activity | 600–950
USD/t CS | ## The carbon price mechanism can play a pivotal role for green steel production Production cost analysis for different steel technologies in Southeast Asia, 2050 [USD/t crude steel] ## **Challenge 3: Policy and regulatory support** #### Upstream, midstream and downstream policies across Southeast Asia | | Country | Viet Nam | Indonesia | Thailand | Malaysia | The Philippines | |------------|--------------------------------------|---|---|---|---|---| | | Steel decarbonisation roadmap | Drafting a strategy for green steel development until 2030 | Ministry of Industry is developing
roadmap | ● N/A | Green steel in New Industry Master
Plan 2030 | N/A | | Upstream | Hydrogen policy | The hydrogen energy development
strategy (2024) aiming to replace
fossil hydrogen in fertiliser and pet-
rochemical sector, and use in green
steel | The national hydrogen strategy
(2023) focuses on replacing the use
of fossil-based hydrogen in fertilisers
and ammonia production – some
pilot projects for green hydrogen
from solar and geothermal | Hydrogen strategy in the making.
The recent power development
plant focus on mixing hydrogen in
the gas pipeline from 5% in 2030 to
20% in 2050 | Hydrogen Economy and Technology
Roadmap (2023) aims to replace fos-
sil based hydrogen in the fertiliser,
chemical and methanol sector and
20% of blending with fossil gas in
power generation | Hydrogen strategy in the making,
with discussions around hydrogen
uses as long-term storage and
alternative fuel | | ס | Renewable electricity policy | Stop and go policy on RE and
currently moving towards auction-
based procurement system. Corpo-
rate PPA has been introduced (2024)
in two mechanisms (private wire or
through wholesale electricity market) | Feed-in tariffs capped at the local
average costs of electricity genera-
tion. Corporate PPA / green energy
as service (GEAS) is limited | Feed in tariff scheme. Considering
the creation of a national framework
for corporate PPA as previously only
approved on a case-by-case basis | Various policies like solar auction programme. Corporate Renewable Energy Supply Scheme (CRESS) allows for direct RE purchase from generators via national grid | Various policy instruments available:
Green Energy Auction Program, Re-
newable Portfolio Standards. Green
Energy Option Program available for
corporate PPA | | E | Carbon pricing & trading
system | Pilot carbon trading programme launching in 2025 for steel, full rollout by 2029 | Carbon pricing mechanisms planned
under Law 7/2021 (ETS + carbon tax)
are limited to power station | No dedicated carbon market for
steel yet, but private initiatives like
Meranti Green Steel aim to fill the
gap | Carbon tax planned by 2026 for
steel, leading to an internal carbon
market | ● N/A | | Midstream | Derisking instrument for investments | ● N/A | ● N/A | Available incentives and funding
for green steel, like Thai Climate
Initiative Fund | Available incentives for green tech-
nology adoption in steel production | Tax incentives available for low-
carbon industries | | | Other supporting regulations | Energy efficiency and emissions
reduction regulations in heavy
industries, including steel | Energy efficiency limits exist for
coated steel | ● N/A | Two-year moratorium on new steel
expansion, encouraging green
transition | Green Metals Initiative promotes
green steel practices | | Downstream | Green building
requirements | Several voluntary green building rating systems encourage the selection of materials with recycled content, such as steel, but do not explicity mandate the use of green steel or focus on embodied carbon | There are general guidelines and standards (like the SNI and GBRS) that encourage sustainable material choices, but not explicitly steel. This is a voluntary programme. | Recycled content in steel in
construction must be 25% if there
is no information available from
suppliers (part of TREES) | Promotes the use of green materials, including steel, as part of its efforts to enhance the sustainability of the construction industry | Building for Ecologically Responsive
Design Excellence program doesn't
include steel. Voluntary programme | | | Public procurement requirements | Viet Nam has issued some policies
related to green public procurement
but has not enacted a Green public
procurement law | Green public procurement doesn't
include steel as part of its product
category | Green public procurement was
announced in 2024, but lacks
implementation framework | Coated flat steel product is part of
the government's public procure-
ment | Green public procurement
implementation is integrated into
the public procurement process
supervised by the Government
Procurement Policy Board but steel
is not part of the list | | | Scrap recycling standards | The Ministry of Natural Resources
and Environment has issued national
technical regulations on imported
scrap materials for production inputs
(Q1 2025) | Informal sector; no dedicated
regulations for steel scrap | Scrap recycling and waste
management, but no specific
technical regulations for imported
scrap for production inputs | Leading in steel scrap recycling, but
needs to standardise scrap quality | Regulate scrap imports under gen-
eral environmental laws, but do not
have specific technical regulations | ## Pathways and enabling conditions ## Southeast Asian countries must make decisive and ambitious commitments to phase out blast furnaces within the next ten years ### **Enabling conditions:** - → Halt investment in any new blast furnaces - → Scale up gas DRI as a transition technology before full adoption of hydrogen-based DRI - → Phase out BF-BOF - → Shift to hydrogen-based DRI and renewablepowered EAF since advancements in green hydrogen and renewables will make this transition both technologically viable and cost-effective ## Policy mix for steel transformation: steel transformation needs smart policies along the whole value chain **Upstream:** Clean energy and Midstream: Climate-friendly Downstream: Climate-friendly raw materials infrastructure production process end products → Renewable energy target → Renewable energy policies → Innovation funding → Green steel definitions (feed in tariffs) and auction → Carbon pricing → Embedded carbon limits → Corporate PPA and → Regional anti carbon → Green public procurement net metering leakage system of green steel → Planning and financing for renewable hydrogen Material efficiency requirements and quality standards and requirements for scrap recycling Enablers: Climate Finance, Skilling/reskilling, collaboration, trade partnerships ## Strategic alignment on green iron trade and regional cooperation can unlock new export markets ### Assessing the emerging green iron trade rather than adding new production capacity #### Potential benefits of green value chain trade partnerships The hydrogen-based direct reduced iron (H₂-DRI) combined with electric arc furnace (EAF) technology allows decoupling of ironmaking – a breakthrough that enables strategic relocation of the most energy- and emission-intensive stage (ironmaking) to regions rich in renewable energy (RES) and high-grade iron ore. **Exporter:** Green value creation, leading to direct job gains and contributing to a just energy transition. Securing the majority of direct jobs by ensuring energy-intensive industry. Accelerating the transition of energyintensive industry by reducing cost. Indirect effects: Cheaper end products, "cost of living" crisis often attributed to ### Regional Comprehensive Economic Partnership (RCEP) - → Establish an ASEAN-level steel decarbonisation working group to boost coordination beyond existing efforts - → Deepen ASEAN+3 cooperation to align infrastructure, green hydrogen and clean standards, supporting CBAM compliance - → Under RCEP, explore anti-carbon leakage mechanisms to harmonise standards, reinvest revenue and fund decarbonisation Tap into emerging sectors such as electric vehicles (Evs) through joint ventures between steel and automotive industries ## **Key takeaways** - Southeast Asia is emerging as a key player in the global steel value chain, driven by domestic demand and exports. With over 90 percent of blast furnaces needing reinvestment by 2040 and emission set to double to over 300 Mt CO2 by 2030, the region has a critical window to shift to low-emission steel. - 2 Southeast Asia's steel sector can transition to low-carbon production through gradual investments in clean technologies. This path would avoid 120 Mt CO₂ by 2040 and strengthen local industrial resilience while enhancing competitiveness against low-cost imports and carbon border tariffs. - Joint efforts between governments and industry are key to building a competitive low-carbon steel sector in Southeast Asia. A value chain approach can establish the region as a global hub for low-carbon steel production, driving economic growth and attracting global investment. - A unified ASEAN strategy is vital to support the region's development amid geopolitical and market pressures. Deeper engagement with China, Japan and South Korea through ASEAN+3 can address shared infrastructure and investment challenges, aligned with climate goals. ## The publication is available for download here: ## Thank you for your attention! Do you have any questions or comments? Kajol, Mentari Pujantoro, Emir Çolak kajol@agora-industrie.de www.agora-industry.org ## **Agora Industry** Agora Think Tanks gGmbH Anna-Louisa-Karsch-Straße 2, D-10178 Berlin T +49 (0) 30 7001435-000 www.agora-industry.org info@agora-industrie.de ## **Reflections and questions** ## **Panel discussion** ## Wrap-up