15 Insights on the Global Steel Transformation

IMPULSE

Agora
Industry
15 Insights on the Global Steel Transformation

PUBLICATION DETAILS

IMPULSE
15 Insights on the Global Steel Transformation

WRITTEN BY
Agora Industry
Anna-Louisa-Karsch-Straße 2 | 10178 Berlin
T +49 (0)30 700 14 35-000
F +49 (0)30 700 14 35-129
www.agora-industry.org
info@agora-industrie.de

Wuppertal Institute for Climate, Environment and Energy
Döppersberg 19 | 42103 Wuppertal
T +49 (0)202 2492-0
F +49 (0)202 2492-108
https://wupperinst.org/
info@wupperinst.org

PROJECT LEAD
Wido K. Witecka
wido.witecka@agora-energiewende.de

Ole Zelt
ole.zelt@wupperinst.org

AUTHORS
Wido K. Witecka (Agora Industry)
Oliver von Eitzen Toni (Agora Industry)
Julian Somers (Agora Industry)
Dr. Kathy Reimann (Agora Industry)

ACKNOWLEDGEMENTS
We wish to thank the following colleagues for their contribution in various ways:
Helen Burmeister, Dr. Oliver Sartor, Aylin Shawkat, Frank Peter (all Agora Industry), Dr. Jahel Mielke, Anja Werner, Alexandra Steinhardt, Kinita Shenoy (all Agora Energiewende), Saerok Jeong (NEXT group), Prof. Dr. Max Åhman (Lund University)

This publication is available for download under this scan code.

Please cite as:
Agora Industry and Wuppertal Institute (2023):
15 insights on the global steel transformation
www.agora-industry.org
Dear reader,

“We are walking when we should be sprinting.” With these words the Intergovernmental Panel on Climate Change (IPCC) Chair Hoesung Lee summed up the latest IPCC Synthesis Report. This IPCC report estimates that with currently implemented policies, the world is projected to warm by 3.2°C by 2100. Much greater efforts are needed to drive down greenhouse gas emissions faster.

The steel sector can play a key role in this. Often labeled as a hard-to-abate sector, the steel sector has the potential to turn into a fast-to-abate sector: our study demonstrates that a net-zero iron and steel sector by the early 2040s is technically feasible. New key elements for an accelerated, lower-cost steel transformation include a swift roll-out of direct reduced iron technology, the creation of an international green iron trade, the phase-out of coal in steelmaking, and, above all, expanded international cooperation in tandem with targeted regulatory frameworks.

This study summarises the key findings of our work on the global steel sector. In future publications, we will provide more detailed analyses of low-carbon technologies, our 2050 decarbonisation pathways, the role of international green iron trade and the steel sector’s potential to generate negative emissions.

We wish you a pleasant read!

Frank Peter
Director, Agora Industry

Prof. Dr. Manfred Fischedick
President, Wuppertal Institute

Key findings at a glance:

1. A net-zero steel sector and a coal phase-out in steelmaking by the early 2040s are technically feasible. This can turn iron and steel from a hard-to-abate to a fast-to-abate sector and be a key element to increase global climate ambition. The key strategies to achieve such an accelerated steel transformation are material efficiency, an increase of scrap- and hydrogen-based steelmaking plus bioenergy and carbon capture and storage (BECCS).

2. Green iron trade can lower the costs of the global steel transformation and can be a win–win solution for green iron exporters and importers. Transporting embodied hydrogen (H_2) as green iron will be significantly cheaper than transporting H_2 and its derivatives by ship. For countries with high renewable H_2 costs, green iron imports can increase the competitiveness of low-carbon steelmaking, thereby helping to safeguard local jobs in the steel industry. For green iron exporters, this can create new jobs and value added.

3. Carbon capture and storage (CCS) on the coal-based blast furnace-basic oxygen furnace route (BF-BOF) will not play an important role in the global steel transformation. CCS on the BF-BOF route is unlikely to reduce direct CO$_2$ emissions beyond 73% and cannot address upstream emissions (coal mine methane leakage). Compared to other key technologies, steelmakers’ efforts to commercialise this technology are currently very low. If BF-BOF CCS does not materialise, new coal-based steel plants face a high carbon lock-in and stranded asset risk.

4. To unlock the full acceleration potential of the steel transformation, national governments need to create an adequate regulatory framework and develop cross-country strategic partnerships. International cooperation will be needed to address key bottlenecks (i.e. DRI plant engineering, suitable ore qualities, low-carbon H_2), minimise stranded assets and help to unlock green iron trade.
Content

<table>
<thead>
<tr>
<th>Insight</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insight 1</td>
<td>The iron and steel sector can turn from a hard-to-abate to a fast-to-abate sector. A net-zero iron and steel sector by the early 2040s is technically feasible</td>
<td>8</td>
</tr>
<tr>
<td>Insight 2</td>
<td>The accelerated transformation of the global steel industry can be a key element to increase global climate ambition</td>
<td>11</td>
</tr>
<tr>
<td>Insight 3</td>
<td>The key levers for enabling 1.5°C compatible steel decarbonisation pathways are material efficiency, an increase in scrap-based steelmaking, hydrogen-based steelmaking, and bioenergy carbon capture and storage (BECCS)</td>
<td>14</td>
</tr>
<tr>
<td>Insight 4</td>
<td>A phase-out of coal in the steel sector by the early 2040s is technically feasible</td>
<td>18</td>
</tr>
<tr>
<td>Insight 5</td>
<td>International green iron trade can lower the cost of the global steel transformation</td>
<td>21</td>
</tr>
<tr>
<td>Insight 6</td>
<td>International green iron trade can be a win–win for importers and exporters. Unlocking the full speed and scale of the green steel transformation requires an international level playing field and strategic partnerships</td>
<td>24</td>
</tr>
<tr>
<td>Insight 7</td>
<td>Direct reduced iron (DRI) plant engineering and construction capacities are currently a major bottleneck and need to be massively scaled up as they will set the pace of the global steel transformation</td>
<td>27</td>
</tr>
<tr>
<td>Insight 8</td>
<td>The steel sector can contribute to negative emissions via bioenergy carbon capture and storage (BECCS)</td>
<td>30</td>
</tr>
<tr>
<td>Insight 9</td>
<td>CCS on the BF-BOF (blast furnace–basic oxygen furnace) route will not play an important role in the global steel transformation</td>
<td>33</td>
</tr>
<tr>
<td>Insight 10</td>
<td>By 2040, over 90% of existing blast furnaces can be phased-out without a premature shutdown</td>
<td>36</td>
</tr>
<tr>
<td>Insight</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Insight 11</td>
<td>The current 2030 pipeline of unabated coal-based blast furnaces in emerging economies is facing a large carbon lock-in and stranded asset risk</td>
<td>39</td>
</tr>
<tr>
<td>Insight 12</td>
<td>If the limited supply of low-carbon H₂ is channelled into no-regret applications, low-carbon H₂ supply will likely not be a major bottleneck for the global steel transformation</td>
<td>42</td>
</tr>
<tr>
<td>Insight 13</td>
<td>The availability of DR-grade pellets is a major potential bottleneck for the global steel transformation. Solutions exist, but they need to be actively pursued</td>
<td>45</td>
</tr>
<tr>
<td>Insight 14</td>
<td>The bottlenecks for a 1.5°C compatible steel transformation pathway are manageable, but joint action from governments and industry is needed to address them</td>
<td>48</td>
</tr>
<tr>
<td>Insight 15</td>
<td>Achieving a net-zero steel sector will require governments to adopt a comprehensive policy framework that addresses the entire value chain. International coordination and cooperation will be key in this regard</td>
<td>51</td>
</tr>
</tbody>
</table>

References 54
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEL</td>
<td>Alkaline iron electrolysis</td>
</tr>
<tr>
<td>ASEAN</td>
<td>Association of Southeast Asian Nations</td>
</tr>
<tr>
<td>BAU</td>
<td>Business as usual</td>
</tr>
<tr>
<td>BECCS</td>
<td>Bioenergy carbon capture and storage</td>
</tr>
<tr>
<td>BF-BOF</td>
<td>Blast furnace–basic oxygen furnace route</td>
</tr>
<tr>
<td>BF-BOF-CCS</td>
<td>Blast furnace–basic oxygen furnace with post-combustion carbon capture and storage</td>
</tr>
<tr>
<td>CAPEX</td>
<td>Capital expenditures</td>
</tr>
<tr>
<td>CBAM</td>
<td>Carbon border adjustment mechanism</td>
</tr>
<tr>
<td>CCfDs</td>
<td>Carbon contracts for difference</td>
</tr>
<tr>
<td>CCGT</td>
<td>Combined cycle gas turbine</td>
</tr>
<tr>
<td>CCS</td>
<td>Carbon capture and storage</td>
</tr>
<tr>
<td>CDR</td>
<td>Carbon dioxide removal</td>
</tr>
<tr>
<td>CS</td>
<td>Crude steel</td>
</tr>
<tr>
<td>DACCS</td>
<td>Direct air carbon capture and storage</td>
</tr>
<tr>
<td>DR</td>
<td>Direct reduction</td>
</tr>
<tr>
<td>DRI</td>
<td>Direct reduced iron</td>
</tr>
<tr>
<td>DRI–EAF</td>
<td>Direct reduction and electric arc furnace</td>
</tr>
<tr>
<td>DRI–SMELT–BOF</td>
<td>Direct reduction, electric smelter and basic oxygen furnace</td>
</tr>
<tr>
<td>EAF</td>
<td>Electric arc furnace</td>
</tr>
<tr>
<td>EJ</td>
<td>Exajoule</td>
</tr>
<tr>
<td>EV</td>
<td>Electric vehicle</td>
</tr>
<tr>
<td>Fe content</td>
<td>Iron content</td>
</tr>
<tr>
<td>FIDs</td>
<td>Final investment decisions</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse gases</td>
</tr>
<tr>
<td>GtCO₂</td>
<td>Gigatonnes of carbon dioxide</td>
</tr>
<tr>
<td>H₂</td>
<td>Hydrogen</td>
</tr>
<tr>
<td>H₂–DRI</td>
<td>Hydrogen–based direct reduction</td>
</tr>
<tr>
<td>HBI</td>
<td>Hot briquetted iron</td>
</tr>
<tr>
<td>IEA APS</td>
<td>International Energy Agency Announced Pledges Scenario</td>
</tr>
<tr>
<td>IEA NZE</td>
<td>International Energy Agency Net Zero Emissions Scenario</td>
</tr>
<tr>
<td>IEA STEPS</td>
<td>International Energy Agency Stated Policies Scenario</td>
</tr>
<tr>
<td>kgCO₂ₑ</td>
<td>Kilogram of carbon dioxide equivalent</td>
</tr>
<tr>
<td>kWh</td>
<td>Kilowatt-hour</td>
</tr>
<tr>
<td>LOHC</td>
<td>Liquid organic hydrogen carriers</td>
</tr>
<tr>
<td>MOE</td>
<td>Molten oxide electrolysis</td>
</tr>
<tr>
<td>Mt</td>
<td>Million tonnes</td>
</tr>
<tr>
<td>MtCO₂</td>
<td>Million tonnes of carbon dioxide</td>
</tr>
<tr>
<td>Mtpa</td>
<td>Million tonnes per annum</td>
</tr>
<tr>
<td>NDCs</td>
<td>Nationally Determined Contributions</td>
</tr>
<tr>
<td>NG</td>
<td>Natural gas</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>NG-DRI CCS</td>
<td>Natural gas–based direct reduction with carbon capture and storage</td>
</tr>
<tr>
<td>NZE-scrap EAF</td>
<td>Near-zero emissions scrap electric arc furnace</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Cooperation and Development</td>
</tr>
<tr>
<td>OPEX</td>
<td>Operating expenditures</td>
</tr>
<tr>
<td>PCI</td>
<td>Pulverised coal injection</td>
</tr>
<tr>
<td>RES</td>
<td>Renewable energy sources</td>
</tr>
<tr>
<td>ROW</td>
<td>Rest of the world</td>
</tr>
<tr>
<td>SOGDC</td>
<td>Sabah Oil & Gas Development Corporation</td>
</tr>
<tr>
<td>TCO</td>
<td>Total cost of ownership</td>
</tr>
<tr>
<td>tCO₂</td>
<td>Kilotonnes of carbon dioxide</td>
</tr>
<tr>
<td>TRL</td>
<td>Technology readiness level</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
<tr>
<td>USD/kg H₂</td>
<td>US dollars per kilogram of hydrogen</td>
</tr>
<tr>
<td>WI</td>
<td>Wuppertal Institute</td>
</tr>
<tr>
<td>WV Stahl</td>
<td>German Steel Association</td>
</tr>
</tbody>
</table>
1 The iron and steel sector can turn from a hard-to-abate to a fast-to-abate sector. A net-zero iron and steel sector by the early 2040s is technically feasible.

Pathways to net-zero: annual CO₂ emissions in the steel sector (left) and key metrics (right) Figure 1

What if the global iron and steel sector could reach net-zero greenhouse gas (GHG) emissions in the early 2040s? Would you still call it a hard-to-abate sector?

Net-zero targets for steel have come a long way...

In October 2020, the IEA published its Iron and Steel Technology Roadmap, setting out a pathway for the steel sector to achieve a 90% GHG emissions reduction by 2070\(^1\) (IEA 2020) in its main scenario (the Sustainable Development Scenario). This was followed in April 2021 by the IEA’s Net Zero by 2050 report, which shows how the world can achieve net-zero CO₂ emissions across all sectors by 2050, thus limiting global warming to 1.5°C by 2100 (IEA 2021).

Since that time, steel companies accounting for more than 500 Mt of coal-based primary steel production have announced targets to reach carbon neutrality by 2050 or earlier. However, most carbon neutrality targets and steel decarbonisation scenarios still foresee residual emissions in the steel sector by 2050. For example, in the IEA Net Zero by 2050 report, the steel sector is one of the few sectors that still has residual emissions, with 200 MtCO₂ in 2050.

\(^1\) According to the IEA, the Sustainable Development Scenario is in line with well below 2°C global warming by 2100.
The core strategies for a fast transition include: the rapid deployment of key technologies (insight 3); an accelerated coal phase-out in the steel sector (insights 4, 9, 10, and 11); the development of green iron trade (insight 5) and bioenergy carbon capture and storage (BECCS) (insight 8); measures to address key bottlenecks (insights 7, 12, 13, and 14); the establishment of an adequate regulatory framework (insight 15); and, not least, strong international collaboration (insights 6, 11, and 15).

The old narrative:
Steel is hard-to-abate because...

The new narrative:
Steel can be fast-to-abate because...

From hard-to-abate to fast-to-abate: how the steel sector’s role is changing

<table>
<thead>
<tr>
<th>Technology</th>
<th>The old narrative: Steel is hard-to-abate because...</th>
<th>The new narrative: Steel can be fast-to-abate because...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>...the low-carbon technologies are not market-ready</td>
<td>...important key technologies to start the transition are available now and we know key strategies and further promising technologies to get to net zero.</td>
</tr>
<tr>
<td>Cost</td>
<td>...green steel is too expensive</td>
<td>...while green steel can cost up to 30–60% more than conventional steel, in most end products the cost increase is only 1–2%. Smart policies can address the issue of cost.</td>
</tr>
<tr>
<td>Zero-carbon electricity</td>
<td>...will require a lot of zero-carbon electricity</td>
<td>...the steel sector is one of the best use cases for zero-carbon electricity. Both the coal to electricity and the coal to renewable H2 fuel switch will provide one of the largest CO2 reduction levers per unit of zero-carbon electricity.</td>
</tr>
<tr>
<td>Speed</td>
<td>...will be one of the slowest sectors to decarbonise</td>
<td>...the steel sector can be one of the fastest sectors to reach net zero. If the full acceleration potential is realised a net-zero steel sector by the early 2040s is technically feasible.</td>
</tr>
</tbody>
</table>

Agora Industry and Wuppertal Institute (2023). Note: Green steel refers to near-zero emissions primary steel. The additional cost range for green steel given here is calculated based on Molten oxide electrolysis (MOE) and renewable H2-based direct reduction (H2-DRI-EAF) in the 2030s compared to a coal-based blast furnace – basic oxygen furnace route (BF-BOF) that is not subject to a CO2 price. These global average costs will vary based on local cost parameters.

(IEA, 2021). Today, the latest 1.5°C compatible steel decarbonisation pathways still show residual emissions of 300 MtCO₂ (MPP 2022) and 180 MtCO₂ (updated IEA NZE in IEA 2022a), respectively, in the steel sector by 2050, such that carbon dioxide removal (negative emissions) in other sectors is needed to reach net zero by 2050.

...but there is even more potential

Against this backdrop, is a net-zero date for the iron and steel industry well before 2050 possible? The short answer is: yes. Our two 1.5°C compatible pathways demonstrate that a net-zero steel sector by the early 2040s is technically feasible.

The hard-to-abate label for steel is no longer justified – the steel sector can be fast-to-abate

There are four key reasons why it is time to remove the hard-to-abate label from steel. First, a set of low-carbon technologies to start the transition are available now and we already know the key strategies and technologies that are required to reach net zero in
Third, the steel sector is one of the best use cases for zero-carbon electricity. The fuel switch from coal to electricity or coal to renewable H₂ (see insight 12) presents one of the largest CO₂ reduction levers per unit of zero-carbon electricity.

Fourth and finally, our scenarios demonstrate that it is technically feasible for the steel sector to reach net-zero GHG emissions by the early 2040s. This would place the steel sector among the ranks of the first sectors to decarbonise globally. In other words, steel can become a fast-to-abate sector.

Second, while the costs for near-zero emission steelmaking are projected to be between 30 to 60% higher than conventional coal-based steelmaking without CO₂ costs, near-zero emission steel would add only 1 to 2% to the final cost of end products (such as cars, buildings, or household appliances) (IEA 2023; MPP 2022). Moreover, smart policy instruments and an adequate regulatory framework can address the issue of higher costs (insight 15).

the steel sector – they need to be deployed quickly (insight 3). For example, direct reduced iron (DRI) technology is already commercially available and still leaves significant flexibility options for steelmakers, including variable feedstocks (natural gas, low-carbon H₂, biomass) and optional CCS.
2 The accelerated transformation of the global steel industry can be a key element to increase global climate ambition

The world is not on track to limit global warming to well below 2°C

Despite significant progress since the Paris Agreement in 2015, the world is currently not on track to limit global warming to well below 2°C (IPCC 2023; IEA 2022a). According to the International Energy Agency (IEA), currently stated policies (STEPS) put the world on track for 2.5°C warming by 2100. The latest IPCC Synthesis Report found that implemented policies result in projected emissions that lead to warming of 3.2°C by 2100, with a range of 2.2°C to 3.5°C (medium confidence) (IPCC 2023).

In the announced pledges scenario (APS), which includes net-zero commitments by governments and companies that have yet to be implemented, the projected global temperature increase reaches 1.7°C by 2100 (IEA 2022a). Between STEPS and APS there is still a large implementation gap; and between APS and a 1.5°C compatible net-zero emission (NZE) pathway there is still an ambition gap (see figure 3).
The steel sector can help to increase global climate ambition

The iron and steel sector is currently responsible for 7 to 8% of GHG emissions – depending on the accounting methodology. Given that steel demand is expected to increase further to accommodate the needs of developing and emerging economies, without adequate measures steel sector emissions will continue to rise up to 2030 (see IEA STEPS for steel). A key question for global climate ambition is how fast the steel sector can bend its CO₂ emissions curve by producing a growing share of near-zero emissions steel.

Our modelled pathways for the iron and steel sector show the potential to contribute significantly to closing both the implementation and ambition gaps (see figure 3). In the best case, they even offer further acceleration potential beyond the latest 1.5°C compatible NZE pathway for the iron and steel industry by the IEA (IEA 2022a). However, achieving this potential will only be possible through international cooperation and if governments and industry act swiftly to address important bottlenecks.

1.5°C compatible steel decarbonisation pathways are possible

The magnitude of global warming we experience will depend on the world’s cumulative GHG emissions. Therefore, cumulative GHG emissions of each sector along with carbon budgets – although subject to constant change – are an important metric for measuring progress and assessing the climate commitments of companies. For example, many steel companies work together with the Science-Based Targets Initiative to certify that their climate targets are 1.5°C compatible (SBTi 2022). In a first cross-sectoral attempt, MPP 2022 derived a 1.5°C compatible cumulative budget for the steel industry of 56 GtCO₂ from 2020 to 2050. Our two 1.5°C compatible scenarios (40 and 43 GtCO₂, respectively) demonstrate that the steel industry could stay significantly below the threshold of 56 GtCO₂ for a 1.5°C compatible carbon budget if the full acceleration potential of the global steel transformation were to be unlocked (figure 4).

Translating the steel sector’s acceleration potential into more ambitious climate action will be key – updated targets are a first step

Today, companies that produce primary steel that have net-zero targets before 2050 cover only 5% of global primary steel production. Another 23% are subject to a net-zero target by 2050, but more than 70% of primary steel production is not yet subject to 2050 carbon neutrality commitments by companies. Translating the global steel sector’s acceleration potential into more ambitious climate targets and action will be key.

Steelmakers in industrialised countries therefore need to start moving net-zero targets to well before 2050. Given that a net-zero steel sector in the early 2040s is technically feasible and considering as well the burden of historical emissions, a 2050 net-zero target for steel companies in industrialised countries is hardly 1.5°C compatible.

For steelmakers in emerging market economies, net-zero targets need to be moved to 2050 or earlier, if 1.5°C compatibility is the objective. These ambitious targets and accompanying implementation
Strategies need to be set now in order to avoid stranded assets in the future (see insight 11).

In light of the fact that the steel sector can turn from a hard-to-abate to a fast-to-abate sector, governments need to adopt concrete enabling policies, including measures to deliver sufficient clean energy and address the social and regional consequences of phasing out fossil-based assets. In addition, governments must update their Nationally Determined Contributions (NDCs) to reflect this increased ambition.
3 The key levers for enabling 1.5°C compatible steel decarbonisation pathways are material efficiency, an increase in scrap-based steel-making, hydrogen-based steelmaking, and bioenergy carbon capture and storage (BECCS).

There are enough decarbonisation levers to rapidly accelerate the reduction of fossil fuels in the steel industry. They need to be implemented fast.

Pathways for 1.5°C compatible steel decarbonisation

In this study, we modelled two 1.5°C compatible steel decarbonisation scenarios. We contrast them with the MPP 2022 Baseline scenario, which serves as a point of reference (MPP 2022). Our 1.5°C scenarios are technically feasible if major bottlenecks are addressed rapidly, key technologies and infrastructure are ramped up quickly, and key policies as well as an appropriate regulatory framework are put in place on time. Our scenarios are not a forecast, but rather demonstrate what could be possible under ideal conditions from a technical point of view. They are intended to specifically direct attention to the technical bottlenecks (insights 7, 12, 13, and 14) and potential technology trends (insights 4, 5, 7, 8, 9) with regards to the global steel transformation.

However, our chosen approach has also limitations: for example, it is not based on a regional breakdown.
of steel production. Furthermore, it assumes that a regulatory framework for near-zero emissions steelmaking will be in place in several world regions to enable the construction of the maximum amount of near-zero emission capacity that is technically feasible. Today, such a framework is not yet in place. However, all of the major building blocks for such a regulatory framework are already known (see insight 15) and international cooperation (see insight 6) could strongly incentivise investments in near-zero emission steelmaking plants in additional world regions.

Our scenarios are based on the following key assumptions:

- **Baseline (MPP, 2022)**: In the baseline scenario no material efficiency is assumed. Steel assets switch to the technology with the lowest total cost of ownership (TCO) at each major reinvestment decision, without a net-zero constraint.
- **Technology Mix**: A moderate improvement in material efficiency is presumed, which mitigates global steel demand growth. Low-carbon key technologies are deployed once they become commercially available. Their adoption is driven by ambitious deployment rates – technology cost plays an important role for deployment, but is not the only determining factor.
- **Global Green Iron**: This scenario contains the same assumptions as that of the Technology Mix scenario, with the exception that DRI deployment rates are doubled after 2030 to illustrate a potentially disruptive scenario, if international green iron trade takes off internationally.

The key levers for our two 1.5°C compatible scenarios are as follows:

Material efficiency: Compared to the Baseline scenario that assumes sustained growth to around 2,550 Mt steel production by 2050, steel production in our two modelled scenarios reaches 2,150 Mt by 2050. Thanks to measures such as improving manufacuring yields, near-net-shape casting, improved building design and construction practices, extending the lifetimes of buildings, and lightweighting in vehicles, steel demand in 2050 can be up to 20% lower while providing the same services (Agora Industry, 2022; IEA 2020a). Our material efficiency assumption (~16% vs. Baseline in 2050) provides a middle-of-the-road approach compared to other 1.5°C compatible scenarios (see figure 6). Policies such as updated building codes that avoid the over specification of structural steel or incentives for a modal shift in transport are examples that could incentivise higher material efficiency (IEA, 2020a).

Increase in scrap-based steelmaking: Given that secondary steelmaking requires five to seven times less energy than primary steelmaking, an increase in scrap-based steelmaking is another key strategy. However, this is limited by the availability of scrap. In our scenarios, scrap availability increases from 710 Mt in 2020 to 880 Mt in 2030 and to 1,240 Mt in 2050. This allows an increase in the global share of secondary steel production from 21% in 2020 to 43% in 2050. Apart from its availability, the quality of the scrap will be a key factor. Policies to keep scrap flows clean will be needed to ensure that secondary steel can be used in most applications rather than being downcycled and confined to few market segments (see insight 15).

H₂-based steelmaking: H₂-based steelmaking in the direct reduction route is the main strategy to decarbonise primary steelmaking in our scenarios. By 2030, 96 Mt of steel are produced via H₂-based DRI plants that run on either 100% low-carbon H₂ or a mix of low-carbon H₂ and natural gas. By 2050, 683 Mt and 873 Mt of crude steel are supplied by H₂-based DRI routes in the Technology Mix and the Global Green Iron scenario, accounting for 56% and 72% of primary steelmaking, respectively. Compared to the MPP Carbon Cost scenario, the low-carbon H₂ demand of 5

In this study, low-carbon H₂ is defined as either renewable or fossil fuel-based H₂ with CCUS.
biomass from a systems perspective will remain subject to future debates (see insight 8). In our Technology Mix scenario, by 2050 BECCS-based routes account for 25% of primary steelmaking (300 Mt).

Direct electrification-based technologies could be a game changer – once they become available

Direct electrification-based technologies such as molten oxide electrolysis (MOE) or alkaline iron electrolysis (AEL) exhibit the lowest CO$_2$ abatement costs among the near-zero emissions steelmaking technologies (see insight 15). But due to their

6 Although BECCS on the BF-BOF route is also conceivable in principle, due to the significantly lower efficiency when generating negative emissions per unit of biomass in this process compared to DRI-based routes and HIsarna BECCS, within the steel sector, biomass should not be allocated for use in the BF-BOF route (see insight 8).

7 One major difference between these two technologies is that MOE requires temperatures above 1500°C whereas alkaline electrolysis can work at temperatures around 110°C (Agora/WI/Lund, forthcoming).
Impulse | 15 Insights on the Global Steel Transformation

comparatively low technology readiness level, these are still subject to high uncertainties (Agora/WI/Lund forthcoming). Expecting availability of full-scale plants only between 2030 and 2035 (MOE) and 2040 (AEL), we used a very conservative deployment of MOE to reach 200 Mt steel production by 2050 in the Technology Mix scenario, since we did not want to rely too much on technologies that are still far away from commercial readiness from today’s point of view. From a pure cost perspective, they could become more economical than H₂-based DRI routes, but given the large uncertainties concerning if and when they will become commercially available, this should not delay the deployment of H₂-based routes today.⁸

Coal-based technologies in combination with CCS have a marginal role in our scenarios

Contrary to many other scenarios, BF-BOF CCS plays only a marginal role in our Technology Mix scenario and is not deployed at all in our Global Green Iron scenario. This is the case for a number of reasons: CCS on the BF-BOF route will likely leave considerable direct residual emissions, cannot address the upstream methane emission that are linked to the mining of metallurgical coal, and is prone to disruptive cost reduction developments in other technologies – for example, if direct electrification technologies such as MOE become commercially available (see insights 4 and 9).

DRI-based routes offer steelmakers significant flexibility

Offering steelmakers great flexibility is one of the advantages of DRI plants: new state-of-the-art DRI plants could be operated with any mix of natural gas and H₂ before transitioning to 100% H₂, natural gas with CCS, and even bioenergy in combination with CCS to generate negative emissions. In our scenarios, we focus mainly on H₂-based DRI routes and BECCS in DRI-based routes and deploy only a moderate share of natural gas-based routes with CCS. With regards to H₂-based DRI routes, the rationale is to minimise direct residual emissions and upstream methane emissions from natural gas. In the case of BECCS, the rationale is to generate some technical negative emissions (for more details, see insight 8). However, these developments are not set in stone. If there is less sustainable biomass available, more DRI routes could be using low-carbon H₂. Similarly, if low-carbon H₂ remains in short supply, more DRI routes could use natural gas with CCS. In all cases, deploying new DRI capacity will be key (see insight 7).

⁸ Given the low technology readiness level (TRL 4) of MOE, cost assessments for a commercial-scale plant are subject to high uncertainty. According to our technology assessment, the MOE route will require around 14.8 GJ of electricity per t of crude steel. This would result in a slightly higher energy demand than the renewable H₂-based DRI-EAF route, which will require 14.3 GJ per t of crude steel under the assumption of an electrolyser efficiency of 70% (Agora Industry/WI/Lund forthcoming). However, given that the MOE route will use electricity directly without additional process steps to produce renewable H₂, overall, this could still be cheaper than renewable H₂-based steel production routes (see figure 30).
A phase-out of coal in the steel sector by the early 2040s is technically feasible

The continued use of fossil fuels in steelmaking up until 2050 will cause avoidable residual emissions

In most other 1.5°C compatible steel decarbonisation scenarios neither coal nor natural gas are fully phased out by 2050 (see i.e. IEA NZE in IEA 2022a and Carbon Cost in MPP 2022). Even though both aforementioned scenarios assume the use of CCS in combination with fossil fuels, due to imperfect CO₂ capture rates, the continued use of fossil fuels up to 2050 results in residual emissions of 180 MtCO₂ and 300 MtCO₂ per year, respectively. Most of these emissions could be avoided.

A phase-out of coal in the steel industry is possible

Our scenarios demonstrate for the first time that the phase-out of coal in the steel industry well before 2050 is technically feasible. In the Global Green Iron and Technology Mix scenarios, coal is phased out by 2043 and 2045, respectively.

9 Our modelling scope includes ironmaking and steelmaking, but not steel finishing. Our aggregated final energy demand is based on a bottom-up approach of the final energy consumption of various steelmaking technologies. They will be detailed in a forthcoming technology analysis. Due to our modelling scope and bottom-up approach our numbers may deviate from other sources.
CCS technologies with fossil fuels leave residual direct emissions and potential upstream emissions

Out of a variety of low-carbon technologies that we assessed, all CCS-based technologies exhibit significantly higher residual emissions than H₂-based or direct electrification technologies such as molten oxide electrolysis (MOE; see figure 8). Moreover, both coal and natural gas are currently linked with considerable upstream emissions from methane leakage that cannot be addressed by CCS technologies. For example, in 2021 the coal mine methane leakage for coal used in the steel industry amounted to 384 MtCO₂ per year, which would increase the CO₂ emissions from the steel industry by ~12%. While measures exist to reduce methane leakage, it is uncertain how and at what scale they could be implemented. Substituting coal in the steelmaking process is a way to eliminate these emissions altogether.

Offsetting avoidable residual emissions with negative emissions comes at an opportunity cost

The most important reason to reduce residual emissions to the strict minimum is that offsetting residual emissions with negative emissions always comes at an opportunity cost. This is because instead of counterbalancing avoidable residual emissions, the negative emissions could be used to actually reduce the CO₂ concentration in the atmosphere. In a world that will scramble to achieve the much-needed carbon dioxide removal to avert the worst impacts of climate change (see insight 8), it is hard to imagine that high avoidable residual emissions from the use of

10 This calculation is based on the global warming potential over 100 years of methane emissions (GWP100).

Figure 8

Residual CO₂ emissions (scope 1 and 3) of breakthrough technologies and proposed IEA near-zero emission threshold for primary steel

Agora Industry and Wuppertal Institute (2023), based on authors’ analysis and IEA (2022g). Note: All primary steel production technologies in this figure have been calculated with a share of 16.5% scrap. *Due to scrap share adjustment the IEA threshold for near-zero emissions primary steel is around 0.34tCO₂/t of crude steel. Upstream emissions for CCS technologies are retrieved from IEA (2022) based on 2050 values for “indirect emissions of fossil fuels”. They assume already large cuts of methane emissions relative to today. Indirect emissions (scope 2) are assumed to be zero if only zero-carbon electricity is used. MOE = molten oxide electrolysis; AEL = alkaline iron electrolysis; NZE-scrap EAF = near-zero emission scrap electric arc furnace; DRI-EAF = direct reduction and electric arc furnace; DRI-SMELT-BOF = direct reduction, electric smelter and basic oxygen furnace; BF-BOF CCS = blast furnace-basic oxygen furnace with post-combustion CCS.
cannot protect such plants from becoming stranded assets (see insight 9). For steel companies and national governments, coal phase-out targets along with alternative strategies and a regulatory framework to build up near-zero emission compatible capacities (see insight 15) could make existing net-zero claims more credible, ensuring that avoidable residual emissions from coal-based steel production routes will be eliminated. This would minimise the carbon lock-in and stranded asset risk and help, among other enabling factors (see insight 11) to provide reliable conditions for net-zero compatible investments.

Minimising stranded assets will require a set of measures

In our scenarios stranded assets are reduced to an absolute minimum. While the stranded asset risk for existing coal-based blast furnaces is limited (see insight 10), for the large 2030 pipeline of potential new coal-based BF-BOF plants in emerging economies the carbon lock-in and stranded asset risk in the 2040s is very high (see insight 11). While many steel decarbonisation scenarios deploy BF-BOF CCS to avoid stranded assets, it is likely that the opposite could be true: retroactive CCS on the BF-BOF route

11 Defining these alternative strategies goes beyond the scope of this study, but could be the subject of future research and discussion.
5 International green iron trade can lower the cost of the global steel transformation

What if the world were to ship embodied H₂ in the form of green iron instead of H₂ and its derivatives for overseas transport? A cheaper global steel transformation is possible.

Renewable and low-carbon H₂ costs vary by country and region

Based on the expected cost of renewable electricity generation and availability of cheap natural gas, the cost of renewable or fossil-based H₂ with CCS vary greatly by country and region. In the case of renewable H₂, between the lowest-cost (around 1.50 USD/kg H₂) and highest-cost countries (3.50 to 4 USD/kg H₂), various studies see a production cost gap of up to 1.50 to 2.50 USD/kg of renewable H₂ (i.e. BNEF 2022a; IEA 2023). Many projected high-cost countries are therefore actively striving towards importing large amounts of renewable or low-carbon H₂.

Transporting H₂ and its derivatives by ship is costly

How H₂ will be imported will have a major impact on the delivered cost of H₂. While imports per repurposed gas pipeline over 3 000 km would add roughly 0.30 USD/kg H₂ for transport, all major H₂ import options via ship such as ammonia, liquid organic hydrogen carriers and ammonia that enable the transport of H₂ by ship.

Agora Industry and Wuppertal Institute (2023), authors’ analysis based on IEA (2022c). Note: Renewable H₂ production costs are derived from BNEF (2022a) and IEA ETP (2023) but are for illustration only. Actual assumptions in our modeling can deviate (see upcoming publication on key technologies for a net-zero steel industry). According to IRENA (2022a), shipping costs of green iron could range from 15 to 50 USD/t. According to McKinsey (2022), shipping costs for green iron in the form of hot briquetted iron (HBI) are similar to those of iron ore pellets; reheating the HBI for use in steelmaking would require 100 to 150 kWh.
For the global steel transformation this has two far-reaching implications:

→ Importing *H₂ and its derivatives* by ship will likely never be a competitive option for H₂-based steelmaking

→ The world’s cheapest renewable H₂ costs can be directly transferred to all steelmaking countries of the world, if HBI is transported by ship and if a liquid world market with competition between green iron producers exists

Transporting embodied H₂ is much cheaper for overseas transport…

A frequently overlooked option is to transport H₂ as embodied H₂ in the form of green iron, for example as hot briquetted iron (HBI). Since this is a bulk material, this does not lead to any energy losses during transport, in contrast to transporting H₂ and its derivatives by ship. By way of comparison, due to energy and conversion losses for H₂ and its derivatives in shipping, only 76% (liquid H₂), 64% (ammonia), and 58% (LOHC) of the initial amount of H₂ before transport is available after transport (IEA 2022c). Transporting HBI will therefore be much cheaper.

…and this cost advantage is structural

What is noteworthy is that the cost advantage is structural. In other words, it does not matter by how much the cost of transporting H₂ and its derivatives by ship can be reduced in the future, as these costs do simply not occur in the process chain of green iron transport, since H₂ does not need to be transported separately (see figure 10). Moreover, transport costs for HBI are roughly the same as for transporting the iron ore pellets that would be required in the H₂-based DRI-EAF route (McKinsey 2022). Transportation costs for HBI would thus only be additional in a case in which the steelmaking country does not import iron ore but produces it domestically.

Green iron trade can reduce the need for H₂-related infrastructure

Moreover, shipping green iron instead of *H₂ and its derivatives* will require significantly fewer process steps and less additional H₂-related infrastructure. For example, compared to H₂ transport by ship via ammonia which would require an ammonia plant in the exporting country, an ammonia cracking plant to reconvert to H₂ in the importing country, as well as a H₂ distribution pipeline to transport the H₂ to the steel site, green iron transport will only require the construction of one HBI plant in the exporting country (see figure 10). Other than that, HBI can basically use the same existing infrastructure as iron ore and can be transported by ship, inland vessel, and train. This is already happening today. In 2021, 8 Mt of HBI produced by natural gas-based HBI plants were shipped overseas and 15 Mt of HBI were transported by land via trains or inland vessels (Midrex, 2022a).

While the case for green iron transport compared to overseas H₂ transport by ship is strong from a purely economic point of view, there are further factors such as strategic autonomy, technology innovation, market power, and the benefits of hot charging the DRI in integrated steel plants that need to be accounted for when comparing green iron imports to integrated DRI production in steel plants. Another key question is how green iron trade could affect jobs in green iron importing countries. This is discussed under insight 6.
Comparison of two cross-country low-carbon steelmaking process chains

Agora Industry and Wuppertal Institute (2023). HBI = hot briquetted iron, DRI = direct reduced iron.

Figure 10
6 International green iron trade can be a win–win for importers and exporters. Unlocking the full speed and scale of the green steel transformation requires an international level playing field and strategic partnerships.

For future \(\text{H}_2 \)-exporting countries, green iron trade will offer new business opportunities and jobs

Green iron exports will provide new opportunities to countries that plan to export renewable or low-carbon \(\text{H}_2 \) by creating additional jobs domestically and allowing countries to capture an additional value-added part of the steelmaking value chain. Many of today’s major iron ore-exporting countries are projected to have comparatively low production costs for renewable \(\text{H}_2 \) (see figure 12). Compared to a scenario in which those countries were to export iron ore and \(\text{H}_2 \) and its derivatives by ship, exporting green iron could allow for around 16% gain in local jobs and 18% increase in value added (see figure 11). Even for low-cost \(\text{H}_2 \)-exporting countries without domestic iron ore resources, importing iron ore and exporting green iron could likely become a viable business case. While the opportunity for green iron exporting countries is apparent, how would green iron trade affect importers? Wouldn’t it lead to significant job losses?
For future green iron importers, the rise of green iron trade can increase the competitiveness of their steel industry in green lead markets – thereby safeguarding over 90% of jobs.

A somewhat surprising finding is that green iron imports would only have marginal negative impacts on employment in importing countries. This is because employment across the steelmaking value chain is unequally distributed. Based on German employment data, we found that ironmaking accounts for around 4%, steelmaking for 11%, and steel finishing for 85% of direct employment in the steel sector (WV Stahl, 2021). For countries with structurally higher renewable H₂ costs, this has important implications for the transformation strategy to H₂-based steelmaking. Simply building H₂-based DRI plants and running them on comparatively higher renewable H₂ costs than other countries will pose a risk to competitiveness. In the worst case, this will not only affect direct employment in ironmaking but endanger jobs along the entire steelmaking value chain. As one pillar of a diversified set of strategies, green iron imports can represent an important means of increasing the competitiveness of the steelmaking value chain by lowering the cost of near-zero emission steelmaking, thereby safeguarding over 90% of jobs (see figure 11).

Green iron importers: finding the right level of autonomy in the value chain

In other words, for countries with comparatively higher low-carbon H₂ costs, green iron imports could be an important hedging strategy against both high costs and potential shortages in the supply of low-carbon hydrogen. Against this backdrop, it will be important for potential green iron importing nations to consider the following factors:

- **Cost efficiency**: For future green iron importers, the rise of green iron trade can increase the competitiveness of their steel industry in green lead markets. This is due to the lower cost of near-zero emission steelmaking.
- **Technology innovation**: Green iron importers should focus on developing and adopting innovative technologies to enhance their competitiveness.
- **Strategic autonomy**: Diversified strategies will be key to safeguarding over 90% of jobs. This includes finding the right import share and implementing a mix of domestic production and imports.

* % of world imports/exports in 2021

For countries with structurally higher renewable H₂ costs, this has important implications for the transformation strategy to H₂-based steelmaking. Simply building H₂-based DRI plants and running them on comparatively higher renewable H₂ costs than other countries will pose a risk to competitiveness. In the worst case, this will not only affect direct employment in ironmaking but endanger jobs along the entire steelmaking value chain. As one pillar of a diversified set of strategies, green iron imports can represent an important means of increasing the competitiveness of the steelmaking value chain by lowering the cost of near-zero emission steelmaking, thereby safeguarding over 90% of jobs (see figure 11).
Unlocking the potential of green iron trade will require international collaboration and strategic partnerships

Despite favourable economics, a liquid world market for green iron will not establish itself on its own but will require international collaboration and a global level playing field. For green iron exporters some key aspects may include: access to climate finance; access to green lead markets in industrialised countries; de-risking instruments to lower the cost of capital for the build-out of renewables, electrolysers, H₂-related infrastructure, and HBI plants; and the buy-in and participation of local communities. For green iron importers key aspects may include reliable long-term off-take agreements and fair import prices.

It is unlikely that the private sector alone can address this diverse and complex set of requirements. Unlocking the potential of international green iron trade in an equitable and sustainable manner will require the involvement of governments and the establishment of strategic partnerships on an equal footing.

...
Direct reduced iron (DRI) plant engineering and construction capacities are currently a major bottleneck and need to be massively scaled up as they will set the pace of the global steel transformation.

DRI deployment will set the pace of the global steel transformation

The deployment speed of DRI plants will be a key enabler of a significantly accelerated global steel transformation. One point of distinction that separates our scenarios from other 1.5°C compatible scenarios is that significantly more DRI capacity is deployed after an ambitious market ramp-up (see figure 13). Given the benefits of green iron trade, from an economic point of view this makes sense. But is it also feasible?

Today’s market for DRI technology is small and highly concentrated

Currently, there are only two technology providers that account for 97% of the market for gas-based DRI plants: Midrex (80%) and Tenova HYL (17%) (Midrex 2022a). With regard to the engineering companies that build DRI plants, Tenova HYL also designs and constructs DRI plants while Midrex uses a licensing model with SMS group and Primetals. So today there are only three main established technology suppliers that build gas-based DRI plants. From 2011 to 2020, 50 Mt of gas-based DRI capacity were built, which...
represents an average annual construction capacity of 5 Mt (Midrex 2022a).

DRI engineering and construction capacity is the biggest bottleneck for an accelerated transformation

Based on expert interviews, we estimate today’s DRI engineering and construction capacity to be between 6 and 8 Mt per year. In an ambitious base case, we estimate that around 70 Mt of additional H₂-ready DRI capacity could be built by 2030. The current 2030 project pipeline of H₂-ready DRI plants stands at 84 Mt and thus already exceeds this 70 Mt figure, putting into question whether this current project pipeline can be realised without further measures (Agora Industry, Global Steel Transformation Tracker). Furthermore, this only amounts to roughly half of the 120 to 150 Mt of additional DRI capacity required by 2030 for a 1.5°C compatible pathway (see insight 14). In this way, although we estimate that capacity expansions by existing players could allow up to 100 Mt of additional DRI capacity to be built by 2030, in order to match the trend of rapidly rising demand for DRI plants, it is likely that additional solutions will be required.

Solutions to ramp up DRI deployment are available

One key solution to address this capacity bottleneck would be to retrain engineers and construction workers to build DRI plants. Overall, the global steel industry does not lack specialised engineering and construction capacity. Moreover, DRI plants are not necessarily more complex in design and construction than BF-BOF plants, but retraining would be required to make some engineering and construction capacity that is currently dedicated to BF-BOF build-out and relining available for the design and construction of DRI plants. For example, in 2004 China alone built 140 Mt of BF-BOF capacity, which is equivalent to represents an average annual construction capacity of 5 Mt (Midrex 2022a).

Direct reduced iron deployment in our scenarios compared to deployment of selected clean energy technologies in the IEA NZE Scenario

<table>
<thead>
<tr>
<th>DRI plant manufacturing</th>
<th>EV batteries</th>
<th>Electrolysers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>2021</td>
<td>2021</td>
</tr>
<tr>
<td>Announced</td>
<td>Announced</td>
<td>Announced</td>
</tr>
<tr>
<td>2030 Tech Mix (Agora/WI)</td>
<td>2030 IEA NZE</td>
<td>2030 IEA NZE</td>
</tr>
</tbody>
</table>

Note: For this comparison, clean technologies were selected that are at the beginning of a potential S-technology adoption curve. 2030 Tech Mix = Technology Mix scenario for the steel sector. IEA NZE = IEA Net Zero Emissions scenario based on IEA (2023). The range for the 2030 IEA NZE targets indicates some residual capacity to accommodate for potential demand fluctuations.
the global annual DRI deployment capacity in our Global Green Iron scenario in the mid-2030s (see figure 13). Another key solution will be new market entrants in the field of H_2-based DRI technology.15

The DRI deployment speed for 1.5°C compatible scenarios is similar to other key technologies

As for any technology that stands at the beginning of a technology adoption curve, the long-term deployment speed of DRI is hard to predict. However, in comparison to the IEA Net Zero Emissions by 2050 (IEA NZE) scenario, the deployment speed in our scenarios is similar to that of other clean energy technologies such as EV batteries and slower than that of electrolysers (IEA 2023, see figure 14). While these technologies may not be perfectly comparable, the examples of EV batteries and electrolysers illustrate what is possible when industry and governments work together on the deployment of key technologies.

The combination of international green iron trade and an accelerated DRI deployment has major disruptive potential. In our Technology Mix scenario, in which annual DRI deployment between now and 2035 is increased tenfold, the global steel sector reaches net zero by 2044. In our Global Green Iron scenario, in which annual DRI deployment by 2035 is increased twentyfold, net zero is reached by 2040. Even though the actual deployment speed is hard to predict today, what is clear already is that any deployment rate that comes close to this will pose an enormous risk of stranded assets to fossil legacy technologies (see insights 4, 9, and 11).

15 For example, Circored, POSCO, and Primetals are working on the commercialisation of a novel innovative H_2-based DRI plants that use fluidised bed reactors. The commercialisation of the technology is expected by 2030.
8 The steel sector can contribute to negative emissions via bioenergy carbon capture and storage (BECCS)

Negative emissions will be needed to limit global warming

Limiting global warming to levels compatible with the Paris Agreement will first and foremost require the rapid mitigation of GHG emissions. But it will also require negative emissions through carbon dioxide removals from the atmosphere. This is the case for two main reasons: (1) to offset the last residual emissions that cannot be abated otherwise to reach net-zero GHG emissions (i.e. livestock farming, cement and lime production) and (2) to correct for an overshoot of atmospheric CO₂ emissions, as foreseen by virtually all 1.5°C compatible scenarios (see IPCC 2018).³⁷

A broad portfolio of carbon dioxide removal methods will be required

The magnitude of carbon dioxide removal (CDR) in major 1.5°C compatible scenarios varies considerably, ranging from 1.9 GtCO₂ (IEA 2021) and 4.5 GtCO₂ (IRENA 2022b) to between 3.5 and 16.5 GtCO₂ per year by 2050 (IPCC 2018).³⁸ Nature-

³⁷ These unavoidable residual emissions include i.e. methane emissions from livestock farming and residual process-related emissions in cement and lime that cannot be fully abated through CCS due to imperfect capture rates.

³⁸ Well below 2°C pathways will also require carbon dioxide removals for the reasons mentioned above.

³⁹ Scenarios with the lowest amount of CDR such as the IEA NZE 2021 assume the steepest emission cuts until 2050.
based CDR solutions such as afforestation are limited due to the increasing scarcity of land and the adverse effects of global warming on ecosystems that have a significant carbon storage and sequestration function. Therefore, technical CDR solutions such as DACCS and BECCS are required to complement natural sinks. The steel sector could contribute to generate negative emissions via BECCS (see figure 15).

Beyond net zero – the steel sector can contribute to negative emissions via BECCS

The basic function of BECCS is simple: biomass absorbs CO\(_2\) from the atmosphere in its growth phase. If the steel industry uses biogenic carbon as a reducing agent or to generate heat and subsequently stores the generated CO\(_2\), it could provide negative emissions, effectively ensuring permanent removal of CO\(_2\) from the atmosphere and the carbon cycle. However, the potential for BECCS to generate negative emissions – regardless of the sector in question – will be limited by two main factors: the limited global supply of biomass and how it will be allocated most efficiently to various end uses.

Sustainably available biomass is limited due to competing land use options...

Land is a scarce resource and land-use competition is expected to increase in the future due to a growing world population, continued consumption of animal proteins, urbanisation, adverse impacts of climate change on productivity, as well as the need to reverse the trend of biodiversity loss (Agora/WI, forthcoming). Presuming that the extraction of biomass, regardless of what it is used for, should not imply detrimental effects on ecosystems and carbon cycles, biomass availability for BECCS will remain limited. Examples of estimates of biomass supply for material and energetic use by 2050, which apply strict sustainability criteria, range between 44 and 64 EJ\(^{19}\) (ETC 2021) to over 102 EJ (IEA 2021) or even as high as 153 EJ.

Carbon dioxide removal potential of various BECCS technologies in the steel sector for 6.4 EJ of sustainable primary biomass use

Agora Industry and Wuppertal Institute (2023). The potentials of this figure are theoretical max. potentials that may be difficult to be fully achieved in reality. They assume that the biomass has zero lifecycle emissions. A biomass to biochar conversion efficiency of 60% was assumed for the Hisarna and BF-BOF BECCS routes. The potentials are non-cumulative as they illustrate the BECCS potential, if all biomass was used in one route. Based on a literature review including ETC 2021, IEA 2021 and IRENA 2022b, we assume that 64 EJ of sustainable raw biomass may be available by 2050 and that the steel sector uses up to 10% of this biomass.
as building heat and road transport where direct electrification is possible could be freed up and may become available for BECCS applications to generate negative emissions.

If the steel industry were to use 6.4 EJ of sustainable primary biomass by 2050 (10% of the overall supply of biomass for energetic and material use) it could generate up to 360 Mt of negative emissions per year (figure 16). Yet, in reality, it will be hard to achieve this full potential. In our Technology Mix scenario we assume the use of 6.2 EJ of primary biomass, corresponding to 5 EJ of final bioenergy consumption for BECCS-based steel production routes, which allows for yearly negative emissions of ~240 MtCO$_2$ by 2050. Due to the significantly lower efficiency to generate negative emissions per unit of biomass compared to DRI-based BECCS routes or HIsar-na-BOF BECCS, our scenarios do not deploy any BECCS on the BF-BOF route.

...and should be allocated for the most efficient use cases

Given the limited supply of biomass to meet the demand for material and energy uses, allocation to the most efficient use cases is essential. To this end, three core principles should be: prioritising material use over energetic use; a cascading use of biomass whenever possible; and use cases that allow for negative emissions over GHG-neutral operations for which viable decarbonisation alternatives exist. While certain direct material uses (like wood products, pulp and paper, and bio-based plastics in a closed carbon cycle) should be prioritised over BECCS use cases, some of today’s biomass use in sectors such as building heat and road transport may become available for BECCS applications to generate negative emissions.

(IRENA 2022b). We chose a conservative middle-of-the-road approach and assume that 64 EJ of sustainable biomass may be available by 2050.

20 For further information, please see the report Bioresources within a Net-Zero Emissions Economy (ETC, 2021).

21 This would require that biomass has zero lifecycle emissions, which is unlikely to be the case in reality.
CCS on the BF-BOF (blast furnace–basic oxygen furnace) route will not play an important role in the global steel transformation

Where the global steel industry is heading: 2030 pipeline of low-carbon steelmaking announcements

Will CCS on the BF-BOF route only be a pipedream?

In 2020, the IEA Iron and Steel Technology Roadmap assigned the same Technology Readiness Level (TRL 5) to 100% renewable H$_2$-based direct reduction and BF-BOF CCS. The commercial readiness of both technologies was anticipated by 2030 (IEA 2020a). However, since 2020, commercial-scale project announcements for both technologies have developed remarkably differently: to date, virtually all steel companies that plan to build low-carbon steelmaking capacity have opted for H$_2$-based or H$_2$-ready DRI plants. While the 2030 project pipeline of H$_2$-ready DRI plants has grown to 84 Mt, the pipeline for commercial-scale CCS on the BF-BOF route amounts to just 1 Mt (see figure 17).

Post-Combustion CCS on the BF-BOF route will leave high residual direct emissions

Many steel decarbonisation scenarios assume that BF-BOF CCS can reduce CO$_2$ emissions by 90% relative to the conventional BF-BOF route (Bataille et al, 2021; MPP 2022, IEA 2022a). Based on a detailed in-depth technology assessment (forthcoming), although technically feasible in theory, we find this assumption to be unrealistically optimis-
First, connecting the many CO₂ point sources in the BF-BOF route to CCS will likely never be economically viable. Second, the CO₂ concentration in the waste gas stream of a sintering plant is only 4 to 5% and thus very low. Because of these two reasons, in our technology assessment (forthcoming) we conclude that BF-BOF CCS will likely only achieve a 73% emission reduction (default case) relative to the unabated BF-BOF route. This would represent an optimum in which the large CO₂ point sources (coke oven underfiring, hot stoves, and power plant) with relatively high CO₂ concentrations are connected to carbon capture, but not the sintering plant and small CO₂ point sources, for which CO₂ capture is technically feasible, but would increase the capturing costs exponentially.

BF-BOF CCS plants will be prone to disruptive cost reduction in other technologies

The costs of BF-BOF CCS will vary based on a wide range of factors, including electricity prices and a connection to onshore or offshore CO₂ storage. However, in the future, BF-BOF CCS could be out-competed by other emerging technologies. For example, according to our calculations, once MOE is available at commercial scale, with delivered electricity prices of 60 USD/MWh it would outcompete even...
the best BF-BOF CCS locations (Agora/WI/Lund, forthcoming). If international green iron trade gains traction, comparatively cheaper H₂ input costs in countries with abundant renewables could start to challenge BF-BOF CCS production in cost.

BF-BOF CCS cannot address upstream emissions from coal mine methane leakage

Another risk is that BF-BOF CCS cannot address the emissions that are associated with methane leakage in coal mines. Accounting for coal mine methane emissions linked to coking coal, which totalled 12 Mt of methane emissions in 2021, would increase the GHG emissions of the steel sector by 384 MtCO₂eq and thus by around 12% (Ember 2023, IEA 2020b and 2022d). While some methane emissions could be reduced, they cannot be fully abated (IEA 2023). Once upstream emissions are taken into account by regulations and included in a green steel definition, this will present a major risk for steelmakers that bet on retroactive CCS and will likely worsen the economics of BF-BOF CCS.

Steel from the BF-BOF CCS route faces an offtake risk in green lead markets

Besides, there is a risk that steel-consuming companies that aim to decarbonise their supply chain do not want to be associated with coal-based technologies at all. Companies that wish to market green products at a higher price to end consumers (e.g. automobiles or household appliances) may fear the reputational damage of being associated with coal-based projects, which they may view as incompatible with their brand identities and decarbonisation strategies.

In conclusion, it’s the combination of various risk factors that need to be analysed for a detailed assessment of the future potential of BF-BOF CCS. If BF-BOF CCS does not materialise in the future, this has important implications for the risk of blast furnaces becoming stranded assets (see insights 10 and 11).

23 This calculation is based on an average Global Warming Potential of methane over 100 years of 32 tons of CO₂ per ton of methane (see IEA 2020b).
By 2040, over 90% of existing blast furnaces can be phased-out without a premature shutdown

By 2030 more than 70% of existing blast furnaces require reinvestment

The 2020s are a crossroads for much of the existing blast furnace fleet. More than 70% (1,090 Mt capacity) will reach the end of their campaign life and require reinvestment. These blast furnace operators will face a choice: relining their blast furnaces and locking in high emissions for more than a decade or substituting blast furnaces that have reached the end of their campaign life with low-carbon technologies. Ideally, all blast furnace operators should choose the latter option. But is that possible?

The scale-up of low-carbon technologies cannot substitute all blast furnaces that reach the end of their campaign life by 2030

There are two main options to replace blast furnaces at the end of their campaign life before 2030: A switch to DRI technologies, or scrap-based steelmaking in electric arc furnaces. Yet even if these...
technologies scale up fast, they will realistically not be able to replace 1 090 Mt of blast furnace capacity by 2030 (see figure 19).

In a best-case scenario, we estimate that out of a maximum of 150 Mt of DRI capacity that could be built by 2030 (see insight 14), 100 Mt of DRI will be used to substitute existing blast furnaces and that increased scrap supply would allow for an increase of scrap-based steelmaking of around 180 Mt by 2030 relative to 2020.26 Moreover, in some world regions blast furnace capacity may be shut down without replacement due to overcapacity issues. We estimate this capacity shutdown at 120 Mt by 2030. Overall, this would still leave around 690 Mt blast furnace capacity that would have to be relined in the 2020s. Is this a major problem that would lock in emissions for another 20 to 25 years or create stranded assets? The short answer is no. This is because real-world data shows that blast furnaces have a much shorter campaign life after relinings (around 13 years on average) than is widely assumed.

Blast furnace relinings have shorter lifetimes than previously assumed...

In most existing steel decarbonisation scenarios the assumptions for an average blast furnace campaign life range from 20 (MPP 2022) to 25 years (IEA 2021 and Bataille et al 2021). However, to our knowledge all these assumptions regarding the campaign life of blast furnaces are based on literature values.

The only study that assessed a real-world dataset of blast furnace campaigns concluded that the average campaign life of blast furnaces is 17 years (Vogl et al 2021). Moreover, the second (15 years) and the third blast furnace campaign (11 years) tend to be significantly shorter than the 20 to 25 years that are

25 The other 50 Mt additional DRI capacity are assumed to be built in emerging economies instead of new BF–BOF plants (see insight 11).

Lifetime of blast furnace campaigns and various blast furnace retrofit measures

<table>
<thead>
<tr>
<th>Average lifetime of blast furnace campaigns – literature assumptions versus real-world data assessment</th>
<th>Lifetime extensions of blast furnaces – based on reinvestment sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEA NZE (2021)</td>
<td>Lifetime extension</td>
</tr>
<tr>
<td>Bataille et al (2021)</td>
<td>Partial relining</td>
</tr>
<tr>
<td>MPP (2022)</td>
<td>USD 50–120 Mio.</td>
</tr>
<tr>
<td>Agora/WI/Lund (2021)</td>
<td>Full relining</td>
</tr>
<tr>
<td>Vogl et al (2021)</td>
<td>11 to 15 years average lifetime after blast furnace relining</td>
</tr>
<tr>
<td>Vogl et al (2021)</td>
<td>0 5 10 15 20 25</td>
</tr>
<tr>
<td>blast furnace campaign life in years</td>
<td></td>
</tr>
</tbody>
</table>

--

Agora Industry (2023) based on Vogl et al (2021) and own analysis (right). Note: The numbers on the right-hand side are based on our analysis of retrofit measures by various European steelmakers.
uniformly assumed for all blast furnace campaigns in most steel decarbonisation studies.

...and blast furnace operators can choose different retrofit measures with varying lifetimes...

Besides, there are various blast furnace retrofit measures, including minor lifetime extensions measures (up to 5 years), partial relinings (8 to 12 years), and full relinings (15 years). The investment sum of the retrofit measure directly correlates with the lifetime extension (see figure 20).

...therefore by 2040 more than 90% of blast furnaces can be phased out without a premature shutdown

So even if a sizeable chunk of blast furnace capacity would have to be relined in the 2020s because low-carbon technologies cannot scale up quickly enough to replace all of them, due to the shorter lifetimes and the option of different retrofit measures, by 2040 more than 90% of all existing blast furnaces could be phased out without a premature shutdown. By 2043, all existing blast furnaces could be phased out without a premature shutdown. Overall, from a global perspective the stranded asset risk for existing blast furnaces is low.
11 The current 2030 pipeline of unabated coal-based blast furnaces in emerging economies is facing a large carbon lock-in and stranded asset risk

The current 2030 pipeline of unabated coal-based blast furnaces in emerging economies is facing a large carbon lock-in and stranded asset risk of their technical lifetimes. Apart from country-specific net-zero targets, the question will also be how fast the steel sector as a whole will decarbonise. If the emergence of disruptive developments such as international green iron trade (insight 5) or MOE deployment plays out, new coal-based BF-BOF plants from the 2020s will be exposed to high public pressure and a carbon lock-in and stranded asset risk in the 2040s.

Today’s investments into new coal-based steel plants will likely be tomorrow’s stranded assets

The 2020s will likely determine the amount of stranded assets that the global steel transformation to net-zero GHG emission produces. This is because key aggregates of the coal-based BF-BOF route have technical lifetimes ranging from 40 (BF and BOF) to 50 (coking plant) or 60 years (sinter plant). If BF-BOF CCS does not materialise in the future, which appears likely from a present-day perspective (see insight 9), these core aggregates of the BF–BOF route face an enormous risk of premature shutdown before the end of their technical lifetimes. Apart from country-specific net-zero targets, the question will also be how fast the steel sector as a whole will decarbonise. If the emergence of disruptive developments such as international green iron trade (insight 5) or MOE deployment plays out, new coal-based BF-BOF plants from the 2020s will be exposed to high public pressure and a carbon lock-in and stranded asset risk in the 2040s.
The 2030 project pipeline of new BF-BOF plants in emerging economies is large

Steel demand in key emerging economies is still projected to grow to satisfy the infrastructure and development needs of a growing population (IEA 2022a; MPP 2022). We estimate the current project pipeline of new coal-based BF-BOF plants in emerging economies to be around 315 Mt. To date, India (113 Mt), ASEAN26 countries (99 Mt), and China (94 Mt) account for 97% of the project pipeline (see figure 21).27

Apart from long-term risks, there are also short-term risks related to global overcapacity of steel production assets. For example, according to the Southeast Asian Iron and Steel Institute (SEAISI), capacity utilization rates in the ASEAN–6 countries are already comparatively low – in particular for long steel producers (OECD, 2022). Against this backdrop, building new coal-based steel plants may also face risks regarding short and medium-term profitability, unless overcapacity issues are addressed (OECD, 2022).

The 2020s are a crossroads for the global steel sector

The 2020s are a crossroads for investment into new steel plants. They present a choice between a pathway that will lock-in high CO₂ emissions for decades and incur a high risk of carbon lock-in and stranded assets, or alternatively, a pathway of net-zero compatible investment that provides future-proof jobs. However, due in no small part to overly optimistic assumptions regarding the role of retroactive CCS on the BF–BOF route, this is not yet conventional wisdom in all 1.5°C compatible steel decarbonisation scenarios. For countries or steel companies that have net-zero targets by 2050, there is a major carbon lock-in and stranded asset risk, if CCS on the BF–BOF pipeline does not materialise. And for steel companies in countries with net-zero targets later than 2050, there is a major carbon lock-in and stranded asset risk if net-zero government targets were to be pushed forward over the next years or if the steel transfor-

26 ASEAN stands for Association of Southeast Asian Nations.

27 While new BF-BOF plants in India and Southeast Asia represent additional net steelmaking capacity, as a result of the so-called capacity swap mechanism, China has been retiring more blast furnace capacity in recent years than it has added (authors’ analysis based on publicly available Chinese local government data).

Solutions to start shifting investments from coal to clean before 2030 will be required

Starting to shift the project pipeline of new steel plants in emerging economies from coal to clean will be an enormous challenge, but there is a lot to gain. A wide set of enabling factors needs to be put in place, including massive investment into renewables, low-carbon H₂, and related infrastructure.

Another key issue will be cost. In terms of investment, capital expenditures (CAPEX) that are earmarked for new BF-BOF plants in India, Southeast Asia, and China could be used for DRI plants. The outlays would be similar and thus would not represent additional costs. The real challenge will be to address the additional operational expenditures (OPEX) for H₂-based DRI plants. They range from 30 to 62%, depending to a large extent on the future cost of low-carbon H₂ (see figure 22). Without adequate solutions to address the OPEX cost gap, costs will continue to remain the key issue.

International cooperation will be key

In order to shift a growing share of investment to net-zero compatible investments, international
cooperation will be required. Important fields of cooperation include, by way of example, significantly increased climate finance for emerging economies, de-risking policies to lower the cost of capital, non-distortive trade agreements, and joint technology development. And while the challenges are enormous, the first ambitious actors have demonstrated that net-zero compatible investments in emerging economies before 2030 are possible. For example, in 2022, SOGDC announced that it will build a new H\textsubscript{2}-ready integrated DRI-based steelwork in Malaysia by 2025 that will be initially operated with natural gas and use low-carbon H\textsubscript{2} as it becomes available (Borneo Post 2022). To be sure, shifting a growing share of new steel plant investment from coal to clean is possible through international cooperation.
If the limited supply of low-carbon H\textsubscript{2} is channelled into no-regret applications, low-carbon H\textsubscript{2} supply will likely not be a major bottleneck for the global steel transformation.

Will low-carbon H\textsubscript{2} supply be a major bottleneck of the steel transformation?

H\textsubscript{2}-based steelmaking in DRI routes requires low-carbon H\textsubscript{2}. To date, low-carbon H\textsubscript{2} production is less than 1 Mt (IEA 2022e). This begs the question as to whether a shortage of low-carbon H\textsubscript{2} supply is likely to delay or slow the global steel transformation. The short answer is no, not necessarily.

The 2030 low-carbon H\textsubscript{2} project pipeline is growing rapidly, but final investment decisions are still rare

2030 demand for low-emission H\textsubscript{2} is projected to be large, but the project pipeline is growing quickly. In its latest update of their IEA NZE, the IEA projects that 89 Mt of low-carbon H\textsubscript{2} supply by 2030 will be needed across all sectors for a 1.5°C compatible pathway. Out of this amount, the IEA projects that roughly two thirds will be supplied by renewable H\textsubscript{2} and one third by fossil fuel-derived H\textsubscript{2} with CCS (IEA 2022a).
The current 2030 project pipeline of low-carbon H\textsubscript{2} projects amounts to 36 Mt. Currently announced renewable H\textsubscript{2} accounts for 25 Mt by 2030 (BNEF 2022b) and fossil fuel–derived H\textsubscript{2} with CCS accounts for 11 Mt (IEA 2023). While this only covers 40% of the 89 Mt required, the low-emission H\textsubscript{2} project pipeline is growing rapidly. For example, the 36 Mt pipeline figure corresponds to a 50% increase since September 2022, when the low-emission H\textsubscript{2} pipeline stood at 24 Mt – which in turn already marked a 40% increase compared to the previous year (IEA 2022e). However, based on IEA’s Hydrogen Project Database up to October 2022, only H\textsubscript{2} projects totalling 4 Mt have reached the stage of final investment decision (IEA 2022f).

On a global level, low-carbon H\textsubscript{2} supply may not be a bottleneck for the global steel transformation

A somewhat surprising finding is that the supply of low-carbon H\textsubscript{2} up to 2030 may not be a bottleneck for the global steel transformation. In our two steel decarbonisation scenarios, the low-carbon H\textsubscript{2} demand of the steel sector amounts to 5 Mt by 2030. This corresponds to 13% of the current low-carbon H\textsubscript{2} project pipeline, if all projects are fully realised. Coincidentally, 13% is exactly the share of low-carbon H\textsubscript{2} that the IEA NZE 2021 allocated to the steel sector in 2030, which represents a very conservative assumption, as will be described below.

The coal to H\textsubscript{2} switch in the steel sector offers one of the comparatively highest CO\textsubscript{2} reduction levers

There is a growing scientific consensus that low-carbon H\textsubscript{2} should not be used in sectors in which direct electrification alternatives are possible and already available today (i.e. Liebreich, 2022; Agora Energiewende, 2022). However, efficiency considerations should not stop there. Indeed, this is also relevant for the question how to allocate low-carbon H\textsubscript{2} amongst certain no-regret applications. Whenever a coal to H\textsubscript{2} fuel switch is possible (like in steel), this will have a far bigger CO\textsubscript{2} reduction impact compared to a natural gas to H\textsubscript{2} switch (fertiliser) or an oil to H\textsubscript{2} derivative switch (ammonia or methanol in maritime shipping) (figure 24).

To be sure, the climate mitigation impact is not the only relevant criterion for H\textsubscript{2} allocation. Technological innovation to produce synthetic fuels for maritime shipping, aviation, and chemicals to enable climate neutrality in these sectors is also important. Yet the steel industry has a very strong case for using more than just 13% of the available low-carbon H\textsubscript{2} supply. For the steel industry, the major bottleneck will likely not be H\textsubscript{2} supply, but rather the fast deployment of DRI plants that can use it (see insights 7 and 14).

Steelmakers have a wide range of options to start the transition before 2030

Although on a global level low-carbon H\textsubscript{2} supply will likely not be a major bottleneck for the steel industry, this can and will often be different in specific regional contexts – especially in the short-term. Apart from H\textsubscript{2} supply, the connection of an iron and steel manufacturing site to H\textsubscript{2} infrastructure will be crucially important. But even when such connection is difficult, there are several options for starting the steel transformation now. A first option that does not require any H\textsubscript{2} is to substitute blast furnaces with electric arc furnaces. If steelmakers produce high-quality secondary steel that can substitute primary steel in certain use cases, this can incentivise better practices for scrap recycling to ensure clean scrap flows, thus improving circularity while unlocking new market segments for secondary steel. Several steelmakers such as Algoma Steel, voestalpine, and Liberty Steel are already implementing this option at various sites. A second option is to build H\textsubscript{2}-ready DRI plants and operate them with natural gas initially.
problem of long lead times for the build-up of H\textsubscript{2} infrastructure and high overseas H\textsubscript{2} transport costs, but still allow the production of near-zero emission steel before 2030. POSCO and Nippon Steel have announced plans that pursue this strategy.

until the DRI plant can be connected to H\textsubscript{2} infrastructure. Examples of steelmakers that pursue this option include thyssenkrupp and ArcelorMittal Dofasco. And finally, steelmakers could choose to import green iron from abroad, which would circumvent the
13 The availability of DR-grade pellets is a major potential bottleneck for the global steel transformation. Solutions exist, but they need to be actively pursued.

DR-grade pellet supply could be a major bottleneck for the global steel transformation

DR-grade pellet supply is often mentioned as a major bottleneck for the switch to H₂-based steelmaking (McKinsey 2021; Midrex 2022b; IEEFA 2022a). What is the current state of play and are there solutions for addressing this issue?

The switch to the H₂-based DRI-EAF route requires so-called DR-grade pellets...

In the short term, the H₂-based DRI-EAF route will be the most promising option to significantly reduce the CO₂ emissions of primary steelmaking. The DRI-EAF route requires the use of so-called DR-grade pellets. The requirements for DR-grade pellets of low impurities (gangue) and high iron (>66%) content mean that only high-quality iron ore is suitable unless lower-grade iron ore is beneficiated (Midrex 2022a; IEEFA 2022a).

...but today only 3 to 4% of iron ore shipments are DR-grade pellet quality

Today only 3 to 4% of seaborne iron ore shipments are DR-grade pellet quality that would be suitable for the DRI-EAF route (MPP 2021, Vale in IEEFA 2022a). Unless this problem is addressed, this risks being a
Agora Industry | 15 Insights on the Global Steel Transformation

major bottleneck for the deployment and operation of DRI-EAF plants (see also insight 14).

Can DR-grade quality iron ore supply match DR-grade pellet demand?

One key question is how much additional DR-grade iron ore can be made available by 2030 to supply a rapidly growing demand for DR-grade pellets. The currently announced 2030 DRI-EAF project pipeline of 64 to 77 Mt of additional DRI-EAF capacity will require between 71 and 86 Mt of DR-grade pellets from suitable iron ore per year. This would already more than exceed the current 2030 pipeline of new iron ore mining projects that could supply DR-grade quality – making this a major bottleneck (see figure 26). Solutions to address this bottleneck exist, but they need to be pursued.

More iron ore mining projects that can supply DR-grade iron ore quality need to be developed

Based on Wood MacKenzie’s 2021 iron ore project review, IEEFA concluded that the current project pipeline of iron ore mining projects that could supply DR-grade quality stands at 41 to 213 Mt per year by 2030 (IEEFA 2022a). The lower range of 41 Mt is based on projects for which realisation by 2030 is highly probable or probable, whereas the higher bound estimate includes projects that are possible. Other projections see the maximum supply at 140 Mt by 2030 (IIMA 2021). Given the long lead times for new iron ore mining projects, it is unlikely that all

Unless urgent action is taken 2030 DR-grade iron ore demand will significantly outstrip DR-grade iron ore supply

![Figure 26: Forecast comparison – additional DR-grade iron ore by 2030](image-url)

These numbers are only referring to DRI-EAF and DRI only capacity and do exclude DRI-SMELT-BOF capacity, because the latter does not require DR-grade pellets.

Note: We assume that DRI capacity will have a utilisation rate of 80% and that the DRI-EAF route will require 1.4 t DR-grade pellets and 0.2 t of scrap per 1 t of crude steel, whereas the DRI-SMELT-BOF route does not require DR-grade pellets. "DRI only" plants were considered as DRI-EAF. We further assume that all existing DR-grade pellet supply is used by existing DRI plants.

28 These numbers are only referring to DRI-EAF and DRI only capacity and do exclude DRI-SMELT-BOF capacity, because the latter does not require DR-grade pellets.

Agora Industry and Wuppertal Institute (2023), authors’ analysis based on IEEFA (2022a).
possible projects can be realised by 2030. We therefore estimate that 100 to 125 Mt per year of additional DR-grade quality iron supply by 2030 is an ambitious target but achievable if actively pursued.

Innovative H₂-based steelmaking routes can alleviate pressure from the DR-grade pellet bottleneck

The DRI-EAF route is not the only option for H₂-based steelmaking. There are innovative H₂-based DRI routes that do not require DR-grade pellets. For example, the DRI-SMELT-BOF route can use conventional BF-grade pellets that only require iron ore with 62 to 65% iron content. A contract for the first commercial-scale DRI-SMELT-BOF plant has been awarded (Thyssenkrupp, 2023). The current 2030 pipeline stands at 7 Mt per year. Apart from steelmakers, iron ore mining companies such as BHP and Fortescue in partnership with Primetals are also currently developing and testing electric smelter solutions to make a wider range of ore qualities available for DRI-based steelmaking routes (BHP, 2023; Primetals 2022). Shifting some announced DRI-EAF investments to DRI-SMELT-BOF investments would help to alleviate pressure on the DR-grade pellet bottleneck.

Moreover, innovative H₂-based DRI routes based on fluidised bed reactors are being developed that could use an even wider range of iron ores (Metso Outotec 2021; POSCO 2022; Primetals 2022). The commercial availability of this technology route is currently anticipated around 2030.

Iron ore beneficitation is another key option to increase DR-grade pellet supply

Another major solution to increase the supply of iron ore that is suitable for DR-grade quality is iron ore beneficitation (IEEFA 2022b). Iron ore mining companies could build up iron ore beneficitation facilities, in which lower-grade iron ore can be upgraded to DR-grade quality.

From a present-day perspective, it is likely that all three solutions will be required to address this bottleneck.
14 The bottlenecks for a 1.5°C compatible steel transformation pathway are manageable, but joint action from governments and industry is needed to address them

A 1.5°C compatible steel decarbonisation pathway is possible but will require concerted action from governments and industry to address key bottlenecks. Specifically, both solutions to technical challenges (i.e. DRI deployment, low-carbon H₂ supply, and DR-grade pellets) and an appropriate regulatory framework that is conducive to low-carbon steelmaking must be developed in parallel if the global steel industry is to enter on a 1.5°C compatible steel decarbonisation pathway. By 2030, we estimate that between 120 and 150 Mt of additional DRI capacity will be needed to produce "more than 100 Mt of near-zero emissions primary steel", which is indicated as a potential 1.5°C compatible target for 2030 in the recent Breakthrough Agenda report (IEA/IRENA/UN High Level Champions 2022). Figure 27 undertakes a first attempt to measure progress toward this goal.

The 2022 Breakthrough Agenda report does not indicate which technologies will contribute towards that goal. Based on our technology analysis (forthcoming), we think that DRI plants will likely be the only key technology available to decarbonise primary steelmaking that can scale up significantly before 2030.
Several bottlenecks require urgent action to meet 1.5°C compatible 2030 targets

H₂-ready DRI announcements: To date, steel companies have announced the development of 84 Mt of H₂-ready DRI capacity by 2030, which corresponds to a 56% fulfilment of the upper range of the 2030 target. If DRI project announcements continue to develop as in previous years (average of 33 Mt/year for 2021 and 2022), reaching the 2030 target in this category could be already achieved by the mid-2020s. **Current status:** Promising, yet insufficient progress.

H₂-ready DRI – final investment decisions (FIDs): FIDs for low-carbon steel technologies are one of the most important key indicators for tracking the real-world progress of the steel transformation. They require sufficient confidence by the steel company and investors that the enabling conditions for the operation of a low-emission steel plant are in place. Such enabling conditions will depend in no small part on the establishment of a regulatory framework that addresses the higher cost of low-carbon steelmaking (see insight 15) and the other aforementioned bottlenecks. To date, one commercial-scale H₂-ready DRI plant has already been constructed in China, and the announcement of several FIDs for H₂-ready DRI plants is expected in 2023. If these FIDs are counted, 12% of the 2030 target would be fulfilled (figure 27 and 28). Accordingly, urgent action is needed to provide an adequate regulatory framework and the necessary infrastructure to enable further FIDs. **Current status:** Not on track.

Annual DRI construction capacity: DRI engineering and construction capacity is a key enabler of the steel transformation – yet also a major bottleneck. The current 2030 DRI project pipeline (84 Mt by 2030) already significantly exceeds our estimate of the plant development potential that is possible with existing engineering and construction capacities (70 Mt by 2030). This is currently a major, if not the biggest, bottleneck. Unless urgent action is taken to address this problem, this will jeopardise attainment of the 2030 targets (see insight 7). **Current status:** Not on track.

Low-carbon H₂ announcements: The supply of low-carbon H₂ is a key enabler for near-zero emission steelmaking in H₂-based DRI plants. Today, the 2030 project pipeline for renewable H₂ is estimated to be 36 Mt, thus covering 40% of the 89 Mt of 2030 H₂ demand in IEA NZE (IEA, 2022a). In our scenarios the steel industry’s low-carbon H₂ demand by 2030 is around 5 Mt, accounting for 13% of the 36 Mt. Even if only the current 2030 project pipeline is realised, this will not be a major bottleneck for the steel transformation globally, so long as H₂ is prioritised for no-regret applications (see insight 12). However, in addition to government policies to incentivise the channelling of H₂ into no-regret applications – for example, by encouraging an ambitious ramp-up of H₂ use in H₂-ready DRI plants – steel companies should also state much clearer targets on how much low-carbon H₂ they plan to use by when. **Current status:** On track.

Low-carbon H₂ final investment decisions: Currently, 0.6 Mt of low-carbon H₂ are being produced (IEA, 2022e). According to the IEA Hydrogen Project Database, by October 2022 around 4 Mt had reached final investment decision or under construction status. Accelerating the introduction of a strong regulatory framework for low-carbon H₂ will be important for increasing the number of final investment decisions. **Current status:** Not on track.

30 Many steelmakers have announced their intentions to build H₂-ready DRI plants, and have stated they could be converted to low-carbon H₂ use in the future, but without specifying concretely when this would take place. Specific objectives for low-carbon H₂ use could help to coordinate the ramp-up of H₂ and related infrastructure, to track progress towards net-zero goals, and to connect producers of near-zero emission steel with potential buyers (IEA, 2023).
address this bottleneck, the current plans for DR-grade pellet supply cover only 33% of our estimated 2030 demand and thus fall significantly short of what is needed by 2030 (see insight 13).

Current status: Not on track.

DR-grade pellet supply: The supply of DR-grade pellets is often cited as a key requirement for the switch to H₂-based DRI plants (McKinsey 2021; Midrex 2022b; IEEFA 2022a). However, this is only true for the DRI-EAF route, but not for the so-called DRI-SMELT-BOF route. While options exist to

Gloria Mora | 15 Insights on the Global Steel Transformation

2030 pipeline: near-zero emissions primary steelmaking capacity announcements and final investment decisions

Agora Industry (2023), Global Steel Transformation Tracker (2023). Note: All announced projects can be H₂-ready DRI plants, in principle. However, to date only around 25% of the project pipeline is designed at outset to accommodate switch to renewable H₂. All other DRI plants will run on natural gas or a mix of natural gas and H₂ with the stated intention of most companies to switch to 100% low-carbon H₂ eventually, once it becomes available (see Agora Industry, Global Steel Transformation Tracker). * The 2030 targets refer to the near-zero emissions primary steelmaking capacity that would be needed to be on a 1.5°C compatible pathway based on IEA, IRENA, UN 2022 and authors’ scenarios.
15 Achieving a net-zero steel sector will require governments to adopt a comprehensive policy framework that addresses the entire value chain. International coordination and cooperation will be key in this regard.

The steel transformation will not happen on its own – a comprehensive policy framework is needed

Kickstarting the steel transformation will require specific conditions to be put in place quickly. These conditions can be enabled through a comprehensive policy framework that encompasses the entire steelmaking value chain (see figure 29). Upstream, this will require the build-out of clean energy and raw materials infrastructure. Midstream, policy instruments are needed to enable a business case for near-zero emission steelmaking. And downstream, market-pull policy instruments are needed to unlock the potential of green lead markets.

Upstream: Clean energy and raw materials infrastructure

- Planning and financing of renewable energy and hydrogen and CCS infrastructure
- Sustainability criteria for hydrogen and biomass

Midstream: Climate-friendly production processes

- Carbon Contracts for Difference
- Innovation funding
- Carbon pricing and effective anti-carbon leakage system

Downstream: Climate-friendly end products

- Green steel definitions
- Embedded carbon limits
- Green public procurement of green steel

Material efficiency requirements and quality standards and requirements for scrap recycling

A net-zero steel sector requires a comprehensive policy framework across the entire value chain

Agora Industry (2023)
Midstream: Climate-friendly production processes

→ **Carbon contracts for difference (CCfDs):** CCfDs can address the additional costs (especially OPEX) of near-zero emission steelmaking technologies relative to CO₂-intensive production methods. Their design can be adjusted to complement carbon pricing or a carbon border adjustment mechanism (CBAM), but could also work alone (Agora/WI/Futurecamp, 2022).

→ **Innovation funding:** Additional funds to support net-zero compatible investments can help to support the commercialisation and ramp-up of near-zero emission steelmaking technologies.

→ **Carbon pricing and effective anti-carbon leakage system:** CO₂ pricing is a key element of the policy mix, as it helps to internalise the costs of CO₂-intensive production methods. This can help to close the cost gap between near-zero emission steel production and CO₂-intensive methods. To avoid the exposure of steel companies to carbon leakage vis-à-vis other countries with lower or no carbon pricing, anti-carbon leakage systems like a CBAM or equivalent measures are required.

Downstream: Climate-friendly end products

→ **Green steel definitions:** A commonly agreed definition of what constitutes green steel is key to unlock the potential of green lead markets (i.e. see IEA 2022g). Based on clearly defined rules, private companies and governments could procure green and/or low-emission steel for a higher premium, creating a business case for green steel that does not rely on continued subsidies.

2030 CO₂ abatement cost of key technologies versus the unabated blast furnace – basic oxygen furnace route

<table>
<thead>
<tr>
<th>CO₂ abatement cost [USD/tCO₂]</th>
<th>DRI-SMELT-BOF 100% H₂</th>
<th>DRI-EAF 100% H₂</th>
<th>BF-BOF CCS 73%</th>
<th>MOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>173</td>
<td>158</td>
<td>163</td>
<td>143</td>
</tr>
<tr>
<td>50</td>
<td>154</td>
<td>127</td>
<td>128</td>
<td>101</td>
</tr>
<tr>
<td>100</td>
<td>129</td>
<td>116</td>
<td>99</td>
<td>90</td>
</tr>
<tr>
<td>150</td>
<td>116</td>
<td>116</td>
<td>99</td>
<td>90</td>
</tr>
<tr>
<td>200</td>
<td>86</td>
<td>88</td>
<td>86</td>
<td>93</td>
</tr>
<tr>
<td>250</td>
<td>63</td>
<td>93</td>
<td>93</td>
<td>101</td>
</tr>
</tbody>
</table>

CO₂ reduction vs. BF-BOF

- Market readiness before 2030: 68%, 70%, 79%, 89%, 89%, 98%, 93%, 73%, 93%, 100%
- Market readiness after 2030: 70%, 89%, 98%, 100%

Agora Industry and Wuppertal Institute (2023). Note: Our cost assumptions are based on a literature review and a “middle-of-the-road” approach, in which the lowest and the highest costs are excluded from our cost range. Input assumptions for 2030 are: 50 to 80 USD/MWh for delivered zero-carbon electricity; 2 to 3 USD/kg for delivered low-carbon H₂; 13 to 31 USD/MWh for natural gas; 30 to 60 USD/t of CO₂ for CO₂ transport and storage excluding CO₂ capture.
International coordination and cooperation will be key

The average CO₂ abatement cost of various low-emission steelmaking technologies by 2030 is expected to range from 110 to 160 USD/tCO₂ (Agora/WI/Lund, forthcoming). Few countries are expected to have such a CO₂ price level by 2030. Without a comprehensive policy framework, final investment decisions for near-zero emission steel plants before 2030 are unlikely. International coordination and cooperation will be crucially important. Such coordination and cooperation can help to create an international level playing field; lower the costs of the global steel transformation (insight 5); create win–win opportunities (insight 6); help to jointly remove key bottlenecks (insight 14); minimise stranded assets (insight 11); and ensure a just transition. As Fatih Birol, the head of the IEA, put it, when the IEA Energy Technology Perspectives Report was launched in January 2023: “By working together, countries can be greater than the sum of their parts.”
References

Intergovernmental Panel on Climate Change (IPCC) (2018). Global Warming of 1.5°C. Online available at: https://www.ipcc.ch/sr15/

Publications by Agora Industry

IN ENGLISH

12 Insights on Hydrogen – Argentina Edition

Argentina as a hub for green ammonia
A forward-looking development strategy for addressing the global energy and climate crises

Transforming industry through carbon contracts (Steel)
Analysis of the German steel sector

Power-2-Heat
Gas savings and emissions reduction in industry

International climate cooperation for energy-intensive industry
A (realistic) proposal

12 Insights on Hydrogen

Mobilising the circular economy for energy-intensive materials (Executive Summary)
How Europe can accelerate its transition to fossil-free, energy-efficient and independent industrial production

Mobilising the circular economy for energy-intensive materials (Study)
How Europe can accelerate its transition to fossil-free, energy-efficient and independent industrial production

Getting the Transition to CBAM Right
Finding pragmatic solutions to key implementation questions

Global Steel at a Crossroads
Why the global steel sector needs to invest in climate-neutral technologies in the 2020s
Publications by Agora Industry

IN GERMAN

Power-2-Heat
Erdgaseinsparung und Klimaschutz in der Industrie

Klimaschutzverträge für die Industrietransformation (Stahl) – Update
Aktualisierte Analyse zur Stahlbranche

Klimaschutzverträge für die Industrietransformation (Zement)
Analyse zur Zementbranche

12 Thesen zu Wasserstoff

Mobilisierung der Kreislaufwirtschaft für energieintensive Materialien
(Zusammenfassung)
Wie Europa den Übergang zu einer fossilfreien, energieeffizienten und energieunabhängigen industriellen Produktion vollziehen kann

Klimaschutzverträge für die Industrietransformation (Gesamtstudie)
Kurzfristige Schritte auf dem Pfad zur Klimaneutralität der deutschen Grundstoffindustrie

Klimaschutzverträge für die Industrietransformation (Stahl)
Analyse zur Stahlbranche

All publications are available on our website: www.agora-industry.de
About Agora Industry
Agora Industry is a division of Agora Energiewende that develops strategies and instruments for climate-neutral industrial transformation – in Germany, the EU and globally. Agora Industry works independently of economic and partisan interests. Its only commitment is to climate action.